532 research outputs found

    QuteMol

    Get PDF
    QuteMol is an open source (GPL), interactive, high quality molecular visualization system. QuteMol exploits the current GPU capabilites through OpenGL shaders to offers an array of innovative visual effects. QuteMol visualization techniques are aimed at improving clarity and an easier understanding of the 3D shape and structure of large molecules or complex proteins. * Real Time Ambient Occlusion * Depth Aware Silhouette Enhancement * Ball and Sticks, Space-Fill and Liquorice visualization modes * High resolution antialiased snapshots for creating publication quality renderings * Automatic generation of animated gifs of rotating molecules for web pages animations * Real-time rendering of large molecules and protein (>100k atoms) * Standard PDB input * Quick installers for Win and Mac OS X (intel) (new!) * Support as a plugins of the NanoEngineer-1 the modeling and simulation program for nano-composites (new!

    Browsing Large Image Datasets through Voronoi Diagrams

    Get PDF
    Conventional browsing of image collections use mechanisms such as thumbnails arranged on a regular grid or on a line, often mounted over a scrollable panel. However, this approach does not scale well with the size of the datasets (number of images). In this paper, we propose a new thumbnail-based interface to browse large collections of images. Our approach is based on weighted centroidal anisotropic Voronoi diagrams. A dynamically changing subset of images is represented by thumbnails and shown on the screen. Thumbnails are shaped like general polygons, to better cover screen space, while still reflecting the original aspect ratios or orientation of the represented images. During the browsing process, thumbnails are dynamically rearranged, reshaped and rescaled. The objective is to devote more screen space (more numerous and larger thumbnails) to the parts of the dataset closer to the current region of interest, and progressively lesser away from it, while still making the dataset visible as a whole. During the entire process, temporal coherence is always maintained. GPU implementation easily guarantees the frame rates needed for fully smooth interactivity

    Almost Isometric Mesh Parameterization through Abstract Domains

    Get PDF
    In this paper, we propose a robust, automatic technique to build a global hi-quality parameterization of a two-manifold triangular mesh. An adaptively chosen 2D domain of the parameterization is built as part of the process. The produced parameterization exhibits very low isometric distortion, because it is globally optimized to preserve both areas and angles. The domain is a collection of equilateral triangular 2D regions enriched with explicit adjacency relationships (it is abstract in the sense that no 3D embedding is necessary). It is tailored to minimize isometric distortion, resulting in excellent parameterization qualities, even when meshes with complex shape and topology are mapped into domains composed of a small number of large continuous regions. Moreover, this domain is, in turn, remapped into a collection of 2D square regions, unlocking many advantages found in quad-based domains (e. g., ease of packing). The technique is tested on a variety of cases, including challenging ones, and compares very favorably with known approaches. An open-source implementation is made available

    White Dwarf Cosmochronology in the Solar Neighborhood

    Get PDF
    The study of the stellar formation history in the solar neighborhood is a powerful technique to recover information about the early stages and evolution of the Milky Way. We present a new method which consists of directly probing the formation history from the nearby stellar remnants. We rely on the volume complete sample of white dwarfs within 20 pc, where accurate cooling ages and masses have been determined. The well characterized initial-final mass relation is employed in order to recover the initial masses (1 < M/Msun < 8) and total ages for the local degenerate sample. We correct for moderate biases that are necessary to transform our results to a global stellar formation rate, which can be compared to similar studies based on the properties of main-sequence stars in the solar neighborhood. Our method provides precise formation rates for all ages except in very recent times, and the results suggest an enhanced formation rate for the solar neighborhood in the last 5 Gyr compared to the range 5 < Age (Gyr) < 10. Furthermore, the observed total age of ~10 Gyr for the oldest white dwarfs in the local sample is consistent with the early seminal studies that have determined the age of the Galactic disk from stellar remnants. The main shortcoming of our study is the small size of the local white dwarf sample. However, the presented technique can be applied to larger samples in the future.Comment: 25 pages, 10 figures, accepted for publication in the Astrophysical Journa

    Joint Interactive Visualization of 3D Models and Pictures in Walkable Scenes

    Get PDF
    The 3D digitalization of buildings, urban scenes, and the like is now a mature technology. Highly complex, densely sampled, reasonably accurate 3D models can be obtained by range-scanners and even image-based reconstruction methods from dense image collections. Acquisition of naked geometry is not enough in Cultural Heritage applications, because the surface colors (e.g. pictorial data) are clearly of central importance. Moreover, the 3D geometry cannot be expected to be complete, lacking context, parts made of materials like glass and metal, difficult to reach surfaces, etc. Easily captured photographs are the natural source of the appearance data missing in the 3D geometry. In spite of the recent availability of reliable technologies to align 2D images on 3D data, the two sides of the dataset are not easy to combine satisfactorily in a visualization. Texture mapping techniques, perhaps the most obvious candidate for the task, assume strict content consistency (3D to 2D, and 2D to 2D) which these datasets do not and should not exhibit (the advantage of pictures consisting in their ability to feature details, lighting conditions, non-persistent items, etc. which are absent in the 3D models or in the other pictures). In this work, we present a simple but effective technique to jointly and interactively visualize 2D and 3D data of this kind. This technique is used within PhotoCloud [IV12], a flexible opensource tool which is being designed to browse, navigate, and visualize large, remotely stored 3D-2D datasets, and which emphasizes scalability, usability, and ability to cope with heterogeneous data from various sources

    PolyCube-Maps

    Get PDF
    Standard texture mapping of real-world meshes suffers from the presence of seams that need to be introduced in order to avoid excessive distortions and to make the topology of the mesh compatible to the one of the texture domain. In contrast, cube maps provide a mechanism that could be used for seamless texture mapping with low distortion, but only if the object roughly resembles a cube. We extend this concept to arbitrary meshes by using as texture domain the surface of a polycube whose shape is similar to that of the given mesh. Our approach leads to a seamless texture mapping method that is simple enough to be implemented in currently available graphics hardware

    State of the Art on Stylized Fabrication

    Get PDF
    © 2018 The Authors Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd. Digital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as ‘stylized fabrication methods’. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion or to devise a particular interaction with the fabricated model. In this state-of-the-art report, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research

    Recovering the star formation rate in the solar neighborhood

    Get PDF
    This paper develops a method for obtaining the star formation histories of a mixed, resolved population through the use of color-magnitude diagrams (CMDs). The method provides insight into the local star formation rate, analyzing the observations of the Hipparcos satellite through a comparison with synthetic CMDs computed for different histories with an updated stellar evolution library. Parallax and photometric uncertainties are included explicitly and corrected using the Bayesian Richardson-Lucy algorithm. We first describe our verification studies using artificial data sets. From this sensitivity study, the critical factors determining the success of a recovery for a known star formation rate are a partial knowledge of the IMF and the age-metallicity relation, and sample contamination by clusters and moving groups (special populations whose histories are different than that of the whole sample). Unresolved binaries are less important impediments. We highlight how these limit the method. For the real field sample, complete to Mv < 3.5, we find that the solar neighborhood star formation rate has a characteristic timescale for variation of about 6 Gyr, with a maximum activity close to 3 Gyr ago. The similarity of this finding with column integrated star formation rates may indicate a global origin, possibly a collision with a satellite galaxy. We also discuss applications of this technique to general photometric surveys of other complex systems (e.g. Local Group dwarf galaxies) where the distances are well known

    Practical quad mesh simplification

    Get PDF
    In this paper we present an innovative approach to incremental quad mesh simplification, i.e. the task of producing a low complexity quad mesh starting from a high complexity one. The process is based on a novel set of strictly local operations which preserve quad structure. We show how good tessellation quality (e.g. in terms of vertex valencies) can be achieved by pursuing uniform length and canonical proportions of edges and diagonals. The decimation process is interleaved with smoothing in tangent space. The latter strongly contributes to identify a suitable sequence of local modification operations. The method is naturally extended to manage preservation of feature lines (e.g. creases) and varying (e.g. adaptive) tessellation densities. We also present an original Triangle-to-Quad conversion algorithm that behaves well in terms of geometrical complexity and tessellation quality, which we use to obtain the initial quad mesh from a given triangle mesh

    Practical quad mesh simplification

    Get PDF
    In this paper we present an innovative approach to incremental quad mesh simplification, i.e. the task of producing a low complexity quad mesh starting from a high complexity one. The process is based on a novel set of strictly local operations which preserve quad structure. We show how good tessellation quality (e.g. in terms of vertex valencies) can be achieved by pursuing uniform length and canonical proportions of edges and diagonals. The decimation process is interleaved with smoothing in tangent space. The latter strongly contributes to identify a suitable sequence of local modification operations. The method is naturally extended to manage preservation of feature lines (e.g. creases) and varying (e.g. adaptive) tessellation densities. We also present an original Triangle-to-Quad conversion algorithm that behaves well in terms of geometrical complexity and tessellation quality, which we use to obtain the initial quad mesh from a given triangle mesh
    corecore